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How does the length of the filars in a bifilar pendulum affect its period? 
Personal code:

1 Introduction 
A bifilar pendulum refers to a rigid body suspended by two strings, gyrating along its centre of 
mass. It is widely used to measure the moment of inertia of objects, which quantifies the amount 
of torque required to cause a specific angular acceleration along an axis. By observing the minute 
irregularities in the moment of inertia of the Earth, geologists can measure seismic events in 
remote locations, changes in the Earth’s magnetic inclination and the effect of tides on the Earth’s 
gravitational acceleration (Davison, 1894). Due to its high accuracy, bifilar pendulums are now 
used to measure the moment of inertia of complex geometries, such as aircraft and ships that 
would otherwise be infeasible to solve by hand (Jardin and Mueller, 2007). Since the moment of 
inertia is a critical parameter to aerodynamic and hydrodynamic stability, understanding the 
dynamics of a bifilar pendulum can lead to better designs in aircraft, enhancing the safety in 
transportation systems. 

Although the general equation for bifilar pendulums has been well established, Klopsteg (1930) 
acknowledged the difficulty of determining the centre of mass of test objects, Kane and Tseng 
(1967) determined that minor inequalities of filar lengths will exhibit strong non-linear effects and 
chaotic side-sway motion, while Denman (1992) observed that torsional oscillations and vibrations 
in the filars cause significant deviations in the amplitude and period of bifilar pendulums. Given 
the wide range of unfulfilled assumptions and the variability of experimental results, the 
formulation of an accurate relationship will help solve real-life problems.  

2 Framework 
The following section aims to derive the equation of the bifilar pendulum, suspended by a rod 
(Amrozia and Muhammad, 2017; Then, 1965; Wouter, 2016): 
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√
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, where 𝑇𝑇  is the period for one oscillation, 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 is the length of the rod, 𝑙𝑙 is the length of the filars, 
𝑟𝑟 is the radius of gyration and 𝑔𝑔 is the acceleration due to gravity. Consider a bifilar pendulum 
with a rod MP suspended by filars AM and BP, disturbed from its equilibrium position MP to 
M′P′ and allowed to oscillate about point O along the 𝑧𝑧 ̂axis:  

Figure 1. The decomposition of forces in a bifilar pendulum disturbed from its equilibrium position MP. 
(All diagrams are created by the candidate) 
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The total restoring torque 𝜏𝜏 due to the weight of the rod 𝑊𝑊  is obtained in (2). To better represent 
the motion of the rod, the relationship between 𝜑𝜑 and 𝜃𝜃 is found to be:  

Figure 2. The approximate relationship between 𝜑𝜑 and 𝜃𝜃 using trigonometric identities. 
Substituting (3) into (2), the total restoring torque 𝜏𝜏 expressed in terms of 𝜃𝜃 is: 

𝜏𝜏 = − 𝑚𝑚𝑔𝑔𝑟𝑟2𝜃𝜃
𝑙𝑙

(4) 

Substituting (4) into Newton’s Second Law of Angular motion yields (Hibbeler, 1986): 

𝜏𝜏 = 𝐼𝐼𝜃𝜃 ̈  

𝜃𝜃 ̈+ 𝑚𝑚𝑔𝑔𝑟𝑟2

𝐼𝐼𝑙𝑙
𝜃𝜃 = 0 (5) 

Solving the second-order differential equation in (5) with respect to time 𝑡𝑡, with initial angle 𝜃𝜃𝑖𝑖 =
𝜃𝜃0 and initial angular velocity 𝜃𝜃�̇�𝑖 = 0, the solution is1: 

𝜃𝜃 = 𝜃𝜃0 cos��𝑚𝑚𝑔𝑔𝑟𝑟2

𝐼𝐼𝑙𝑙
𝑡𝑡� (6) 

Therefore, the period 𝑇𝑇  of the cosine curve in (6) is: 

𝑇𝑇 = 2𝜋𝜋
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� 𝐼𝐼𝑙𝑙
𝑚𝑚𝑔𝑔

(7) 

The moment of inertia 𝐼𝐼 of a slender cylindrical rod with length 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 rotating about its centre of 
mass, along the 𝑧𝑧 ̂axis is given by (Weisstein, 1996): 

𝐼𝐼 = 1
12

𝑚𝑚𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟
2 (8) 

Substituting (8) into (7) and simplifying the equation yields the final relationship: 

𝑇𝑇 =
√
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1 The full derivation of this differential equation can be found in the Appendix 17.1. 
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There are several required assumptions to support Equation 9: 

1. The angle 𝜃𝜃 is sufficiently small, such that the vertical translational kinetic energy is 
negligible when compared to the rotational kinetic energy, otherwise, the small-angle 
approximation will not hold, and increase the error in the period by the order of 𝒪𝒪(𝜃𝜃3). 

2. There is no damping. Since 𝜃𝜃 has an effect on 𝑇𝑇 , the loss in rotational kinetic energy of 
the rod such as work done due to air resistance will decrease 𝜃𝜃 and therefore decrease 𝑇𝑇 . 

3. The system has a high degree of symmetricity, namely the filars AM and BP are parallel 
to each other, have the same length 𝑙𝑙 and aligned to the 𝑧𝑧 ̂axis; the top AB and rod MP 
are parallel to each other, have the same length 𝑟𝑟 and aligned to the 𝑥𝑥-̂𝑦𝑦 ̂plane. The axis 
of rotation should also pass through the midpoint and centre of mass of rod MP, otherwise 
slight deviations can amplify chaotic motion (Kane and Tseng, 1967). 

4. There are no external forces that can cause lateral or vertical motion, ensuring stability. 
5. The filars are assumed to be fully flexible, have no torsional rigidity and inextensible 

(Uhler, 1923). Microscopically, the strong intermolecular attraction between molecules of 
a particularly rigid filar will cause resistance to deformation, causing movements to require 
additional tension, resulting in damped responses and unpredictable motion. 

6. The filars are massless, otherwise, it may cause the centre of mass of the test subject to 
be shifted upwards, decreasing the effective filar length 𝑙𝑙 and increasing the mass 𝑚𝑚, overall 
decreasing the period of the oscillations (Karlin and Maday, 1985). 

Additionally, Equation 9 can be linearised by expressing it in the slope-intercept form:  
 

(10) 

 
When 𝑇𝑇  is plotted against 

√
𝑙𝑙, the slope and y-intercept is 

√
3𝜋𝜋𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟
3𝑟𝑟 �1

𝑔𝑔 and 0 respectively. 

3 Variables 
Type Name Symbol Description 

Independent 
Length of 

filars 
𝑙𝑙 

This is measured using a metre ruler and further adjusted 
using the radii of rods to improve the accuracy. It is also 

ensured that the length is the same for both filars. 

Dependent Period 𝑇𝑇  

The time taken for the rod to oscillate one period. To reduce 
human bias and error, this is measured by semi-automatically 
extracting temporal changes of 𝜃𝜃 from a recording and deriving 
its period 𝑇𝑇  using Python scripts in Appendix 17.5 and 17.6. 

Controlled 
Radius of 
gyration 

𝑟𝑟 
The distance between the axis of rotation and the filars. It is 

kept constant by securing the filar to a specific location on the 
rod using tape and to the top by wrapping around a capstan. 

Controlled 
Elastic 
strain 
energy 

𝑈𝑈  

One of the mechanical properties of the filar. While 
Assumption 5 is hard to be fulfilled, by using the same filars 

across trials, the magnitude of the straining effect is kept 
constant and therefore predictable. 

Controlled 
Moment 
of inertia 

of rod 
𝐼𝐼 

Quantifies the resistance of the test object against angular 
acceleration. This is kept constant by using the same test 

object and filars across all trials.  
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4 Pilot Study 
As the percentage error in the period of the equation of the bifilar pendulum (𝑇𝑇 =

√
3𝜋𝜋𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟
3𝑟𝑟 �𝑙𝑙

𝑔𝑔) is 
𝛥𝛥𝛥𝛥
𝛥𝛥0

, the denominator 𝑇𝑇0 must be sufficiently large to reduce the percentage error in 𝑇𝑇 . There are 
three ways in which the range of the other variables can be adjusted to produce the least error: 

1. Increasing the length of the rod (𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟) 
2. Increasing the length of the filars (𝑙𝑙) 
3. Decreasing radius of gyration (𝑟𝑟) 

As explored in Assumption 2, the loss in horizontal rotational kinetic energy should be minimised. 
Hence, to minimise the drag, a long slender rod with a low cross-sectional area of length 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 =
0.1958 ± 0.0001 m and diameter 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 = 0.00678 ± 0.00001 m has been selected as the test object. 

However, if the radius of gyration (𝑟𝑟) is too low, the percentage error 𝛥𝛥𝑟𝑟
𝑟𝑟0

 will increase. Hence, a 
heatmap is created to better assess the effects of 𝑙𝑙 and 𝑟𝑟 on the percentage error of the period 𝑇𝑇 :  

Figure 3. A heatmap of the percentage error in 𝑇𝑇  for 0 < 𝑙𝑙 < 1.5 s and 0 < 𝑟𝑟 < 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟
2  m.2 

As observed in Figure 3, due to experimental setup limitations, the radius of gyration 𝑟𝑟 is selected 
to be 0.0750 m. As for the range of the independent variable, length of filars 𝑙𝑙, it has been decided 
to perform 7 regular intervals between 0.5 ≤ 𝑙𝑙 ≤ 1.0 m. 

Moreover, because 𝑇𝑇 ∝
√

𝑙𝑙, when 𝑙𝑙 → ∞, 
d𝛥𝛥
d𝑙𝑙 → 0, meaning that for increasing filar 
lengths, the corresponding magnitude of 
change in 𝑇𝑇  is exponentially decreasing. 
Hence, in order to produce observable 
and significant changes in Δ𝑇𝑇 , the 
length of filars 𝑙𝑙 is controlled to be below 
1.0 m, as demonstrated in Figure 4. 

 Figure 4. A graph of 𝑇𝑇  against 𝑙𝑙. 

 
2 The relevant formulae and code used to generate the visualisation can be found in Appendix 17.2 and 17.3. 
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5 Apparatus 
2x Clamp and stand 
2x G-clamp 
1x Tape 

3x Metallic rod 
2x Cotton yarn 
1x Camera 

1x Metre ruler (±0.001m) 
1x Vernier scale (±0.0001m) 
1x Micrometer (±0.00001m) 

6 Procedure and Precautions 

Figure 5. A diagram showing the setup of the experiment as rod MP is disturbed from its equilibrium. 

1. Prepare and set up the apparatus accordingly to Figure 5. 
2. Rotate rod MP clockwise to position M′P′ such that filar AM comes in contact with filar 

BP, forming an angle of gyration 𝜃𝜃 of 𝜋𝜋. 
3. Release rod M′P′ and allow it to rotate freely about O along the 𝑧𝑧 ̂axis. 
4. Start the recording when the angle of gyration 𝜃𝜃 decreases to a small magnitude. 
5. Stop the recording when the number of oscillations reaches 50. 
6. Adjust the length of the filars 𝑙𝑙 to the intervals by rotating the capstan at A and B. 
7. Repeat steps 1-6 for three trials. 

To reduce the possible sources of error, minimise the risk of accidents, and satisfy assumptions 
such as Assumption 3, there are several precautions marked in red in Figure 4: 

1. Ensure that the top AB is level and aligned along the 𝑥𝑥 ̂axis. 
2. Ensure a high number of wraps around the capstan, increasing the limit of loading force.  
3. Ensure that filars AM and BP have the same length 𝑙𝑙 and are correctly aligned along the 

𝑧𝑧 ̂axis, especially during Step 6. 
4. Ensure that the optical centre of the camera is colinear with O and the intersection of 

AM′ and BP′, such that the distance between the midpoint of AB has the same radius 𝑟𝑟. 

7 Ethical, safety and environmental concerns 
Since the only waste product disposed of are cotton filars which are biodegradable (Li et al., 2010), 
there are no significant environmental or ethical concerns. Regarding safety concerns, there is a 
small risk where the filar at A and B loses traction, causing rod MP to fall and cause injury, but 
such a possibility has already been minimised by increasing the wrap count around the capstan. 
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8 Raw Data Table 
Measured Length 

of Filars 
Period 

Trial 1 Trial 2 Trial 3  
𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 
m 

Δinstrument = 0.001m 

𝑇𝑇1 
s 

Δ𝑇𝑇1 = 0.0005s 

𝑇𝑇2 
s 

Δ𝑇𝑇2 = 0.0005s 

𝑇𝑇3 
s 

Δ𝑇𝑇3 = 0.0005s 

𝑇𝑇 ± Δ𝑇𝑇  
s ± s 

0.494 1.0383 1.0387 1.0483 1.04 ± 0.01 

0.594 1.1165 1.1313 1.1226 1.12 ± 0.01 

0.654 1.1813 1.1957 1.2298 1.21 ± 0.02 

0.734 1.2643 1.2787 1.2876 1.28 ± 0.01 

0.814 1.3387 1.3522 1.3509 1.35 ± 0.01 

0.894 1.3850 1.4215 1.4072 1.40 ± 0.02 

0.974 1.4531 1.5052 1.4830 1.48 ± 0.03 

9 Qualitative Observation 
During the experiment, the period is observed to increase as the length of the filars increase. 
However, several assumptions outlined in the framework appears to be violated. As an example, 
the vertical position of the rod M′P′ is observed to be higher than its equilibrium position MP, 
causing a vertical motion of the rod along the 𝑧𝑧 ̂axis. For small filar lengths, the effect is also 
observed to be very significant, meaning a loss in kinetic energy due to vertical motion, violating 
Assumption 1. Furthermore, with the angle of gyration and amplitude of motion dampening over 
time, this violates Assumption 2. Additionally, it has been observed that the pendulum exhibits 
strong sensitivity to minor changes in the inputs, often causing the centre of mass to sway 
horizontally unpredictably as it is released by hand, violating Assumption 3. As a result, when 
any of the above scenarios are believed to significantly impact the rotational motion, such trials 
are discarded and repeated. 

10 Processed Data Table 
Square root of 
length of filars 

Absolute uncertainty in 
square root of length of filars 

Period 
Absolute uncertainty 

in period 
√

𝑙𝑙 
m

1
2 

±Δ
√

𝑙𝑙 
±m1

2 
𝑇𝑇  
s 

Δ𝑇𝑇  
±s 

0.7029 0.0007 1.04 0.01 

0.7576 0.0007 1.12 0.01 

0.8087 0.0006 1.21 0.02 

0.8568 0.0006 1.28 0.01 

0.9022 0.0006 1.35 0.01 

0.9455 0.0005 1.40 0.02 

0.9869 0.0005 1.48 0.03 

The following is a sample calculation when 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 = 0.974 m: 
As the torque of the rotational motion originates from the centre of mass of the rod, the filar 
length 𝑙𝑙 can be more accurately represented by accounting for the distance to the centre of mass. 
Hence, the measured length of filars 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 is further offset using the respective radii of the rods3: 

𝑙𝑙 = 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 − 1
2

𝑑𝑑𝑡𝑡𝑟𝑟𝑡𝑡 + 1
2

𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 (11) 

 
3 A visualisation and derivation of the offset formula is provided in Appendix 17.4. 
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As explored in (10), the linearised form involves taking the square root of the filar length 𝑙𝑙. 
Substituting 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 = 0.974 m, 𝑑𝑑𝑡𝑡𝑟𝑟𝑡𝑡 = 0.00678 m and 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 = 0.00683 m into (11)3: 

√
𝑙𝑙 = �𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 −

𝑑𝑑𝑡𝑡𝑟𝑟𝑡𝑡

2
+ 𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟

2
= �0.974 − 0.00678

2
+ 0.00683

2
= 0.9869 m

1
2 (4𝑟𝑟.𝑡𝑡.) (12) 

Consider the representation of 
√

𝑙𝑙 as a multivariable function 𝑓𝑓(𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟, 𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), then the formula 
for error propagation (Ku, 1966) can be used to find the absolute uncertainty in 

√
𝑙𝑙: 

Δ
√

𝑙𝑙 = �� 𝜕𝜕𝑓𝑓
𝜕𝜕𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟

Δ𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟�
2
+ � 𝜕𝜕𝑓𝑓

𝜕𝜕𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡
Δ𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡�

2

+ � 𝜕𝜕𝑓𝑓
𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

Δ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�
2
 

Δ
√
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⎷

��
��

⎝
⎜⎜⎛

Δ𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟

2�𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 −
𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡
2 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2 ⎠
⎟⎟⎞

2

+
⎝
⎜⎜⎛−

Δ𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡
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𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡
2 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2 ⎠
⎟⎟⎞

2

+
⎝
⎜⎜⎛

Δ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

4�𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 −
𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡
2 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2 ⎠
⎟⎟⎞

2

 

Δ
√

𝑙𝑙 = �� 0.001
2
√

0.974025
�

2
+ �− 0.00001

4
√

0.974025
�

2
+ � 0.00001

4
√

0.974025
�

2
= 0.0005 m

1
2 (1𝑠𝑠.𝑓𝑓.) (13) 

As for the calculation of the dependent variable period 𝑇𝑇 , the temporal change in the angle of 
gyration 𝜃𝜃(𝑡𝑡) is first extracted from the recordings of the three trials and is then used to derive 𝑇𝑇  
by passing it through a series of automated computer instructions4. The advantage of utilising 
scripts to calculate variables is to minimise human reaction time errors and human bias. 

For each trial, each frame of the recording is first passed through a Canny edge detector which 
produces an outline of the rod (Canny, 1986), then processed with a probabilistic Hough transform 
to extract the possible locations of the rod (Hough, 1962), as demonstrated below:  

Figure 6. The process of extracting the possible locations of the rod from a recording. 

Since longer Hough lines generally suggest a confident match (Matas et al., 2000), the angle of 
gyration is calculated using the endpoint coordinates (𝑥𝑥1, 𝑦𝑦1), (𝑥𝑥2, 𝑦𝑦2) of the longest Hough line: 

𝜃𝜃 = tan−1 �𝑦𝑦2 − 𝑦𝑦1
𝑥𝑥2 − 𝑥𝑥1

� (14) 

From (6), a plot of the angle of gyration 𝜃𝜃 against time 𝑡𝑡 is expected to follow a cosine curve. 
Therefore, the average period of each oscillation 𝑇𝑇  can be calculated by dividing the difference in 
time (∆𝑡𝑡) between the first and last maxima of 𝜃𝜃(𝑡𝑡) by the number of oscillations 𝑛𝑛: 

𝑇𝑇 = ∆𝑡𝑡
𝑛𝑛

= 𝑡𝑡45 − 𝑡𝑡0
45

(15) 

With reference to (15), the uncertainty in 𝑇𝑇  is: 

Δ𝑇𝑇 = ��Δ𝑡𝑡45
45

�
2
+ �Δ𝑡𝑡0

45
�

2
(16) 

 
4 The Python scripts used to perform the task can be found in Appendix 17.5 and 17.6 respectively. 

Outline of rod
with Canny edge detection

Locations of rod
with probabilistic Hough transform

Original frames
captured at 60 frames per second
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Additionally, to improve the accuracy of the algorithm in selecting peaks, noisy data is first passed 
through a Savitzky-Golay filter (Savitzky and Golay, 1964), as demonstrated below:  

Figure 7. The process of smoothening the function of the angle of gyration 𝜃𝜃 over time 𝑡𝑡. 

Substituting in the values for Trial 1 into (15) and (16), the period 𝑇𝑇1 is therefore5: 

𝑇𝑇1 = 66.15 − 0.76
45

±
⎷

��
�

�
1
60
45�

2

+ �
1
60
45�

2

 

𝑇𝑇1 = 1.4531 ± 0.0005 s (4𝑟𝑟.𝑡𝑡.) (17) 

The half-range method is then used to obtain the average period across 3 trials: 

𝑇𝑇𝑚𝑚𝑟𝑟𝑚𝑚 = max(𝑇𝑇1 + Δ𝑇𝑇1, 𝑇𝑇2 + Δ𝑇𝑇2, 𝑇𝑇3 + Δ𝑇𝑇3) = 1.51 s (2𝑟𝑟.𝑡𝑡.) 

𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚 = min(𝑇𝑇1 − Δ𝑇𝑇1, 𝑇𝑇2 − Δ𝑇𝑇2, 𝑇𝑇3 − Δ𝑇𝑇3) = 1.45 s (2𝑟𝑟.𝑡𝑡.) 

𝑇𝑇 = 𝑇𝑇𝑚𝑚𝑟𝑟𝑚𝑚 + 𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚
2

± 𝑇𝑇𝑚𝑚𝑟𝑟𝑚𝑚 − 𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚
2

= 1.48 ± 0.03 s (2𝑟𝑟.𝑡𝑡.) (18) 

11 Graph 

Figure 8. A linearised plot of the period (𝑇𝑇 ) against square root of length of filars (
√

𝑙𝑙).6 

As shown in Figure 8, since the maximum and minimum gradient lines pass through the error 
bars of all points, it can be said that there are no significant anomalies. However, it has been 
observed that the absolute uncertainty in period for 

√
𝑙𝑙 = 0.8087 m1

2 is exceptionally large. Upon 
further inspection of the footage in Trial 3, a gust of wind has caused the axis of rotation to sway 
unpredictably at 𝑡𝑡 ≈ 104 s, violating Assumption 3 and 4, potentially explaining why the period 

 
5 Since the recording has a framerate of 60 frames per second, the uncertainty in time ∆𝑇𝑇  is 1

60 s. 
6 As the greatest absolute uncertainty in 

√
𝑙𝑙 is only ±0.0007 m1

2, when the horizontal error bar is plotted on the graph, it will only 
take up 0.179% of the horizontal space. Since this magnitude is too small to be observed, the horizontal error bars are not shown. 
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of oscillation is higher than expected. Regarding the goodness of fit for the line of best fit, as the 
magnitude of the error bars tend to increase as 

√
𝑙𝑙 increases, it is possible to fit an exponential or 

logarithmic line of best fit. However, due to the small magnitude of the error bars, the only 
suitable type of line of best fit that fits appropriately within the bounds of the error bars is linear. 

12 Conclusion 
The best mathematical relationship between the two variables is: the period 𝑇𝑇  is positively and 
directly proportional to the square root of the filar length 

√
𝑙𝑙. As demonstrated in (10), when 𝑇𝑇  

is plotted against 
√

𝑙𝑙, the expected slope is 
√

3𝜋𝜋𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟
3𝑟𝑟 �1

𝑔𝑔 and the y-intercept is 0. 

As shown in Figure 8, since the minimum gradient is 1.44 sm−1
2 and the maximum gradient is 

1.59 sm−1
2, the experimental gradient is therefore: 

𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚 + 𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚
2

± 𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚
2

= 1.52 ± 0.07 sm−1
2 (2𝑟𝑟.𝑡𝑡.) (19) 

By rearranging the equation of the expected slope (𝑚𝑚 =
√

3𝜋𝜋𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟
3𝑟𝑟 �1

𝑔𝑔) and applying the formula for 

error propagation (Ku, 1966), the acceleration due to gravity 𝑔𝑔 is: 

𝑔𝑔 = 𝜋𝜋2𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟
2

3𝑚𝑚2𝑟𝑟2 ± ��2𝜋𝜋2𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟
3𝑚𝑚2𝑟𝑟2 Δ𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟�

2

+ �−𝜋𝜋2𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟
2

6𝑚𝑚3𝑟𝑟2 Δ𝑚𝑚�
2

+ �−𝜋𝜋2𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟
2

6𝑚𝑚2𝑟𝑟3 Δ𝑟𝑟�
2

(20) 

Substituting (19), 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 = 0.1958 ± 0.0001 m, 𝑟𝑟 = 0.0750 ± 0.0001 m into (20): 

𝑔𝑔 = 9.8 ± 0.2 ms−2
 (1𝑟𝑟.𝑡𝑡.) (21) 

From above, since the measured gravitational acceleration is within the range of the theoretical 
value of 9.81 ms−2, the experiment fits the general trend. 

According to Krippendorff (1970), systematic error is defined as a constant deviation of values in 
a uniform direction. Hence, for the experiment to have an insignificant systematic error, the 
minimum and maximum gradient lines should encompass the origin. While it is common to 
quantify the magnitude of the systematic error in the period 𝑇𝑇  by assessing the range of the y-
intercept, because the period is computed using fully automated scripts, it is likely that the 
systematic error has instead evolved from human errors, such as the mismeasurements in the filar 
length 𝑙𝑙. Thus, it would be more meaningful to propagate the error in the period 𝑇𝑇  (y-axis) to the 
filar length 𝑙𝑙 (x-axis), such that the sources of the error can be clearly identified and mitigated in 
the future. This is done so by taking the half-range of the bounds of the x-intercepts: 

√
𝑙𝑙𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =

√
𝑙𝑙𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

+
√

𝑙𝑙𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2
±

√
𝑙𝑙𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

−
√

𝑙𝑙𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

2
= 0.01 ± 0.03 m

1
2 (2𝑟𝑟.𝑡𝑡.) (22) 

By taking the square on 
√

𝑙𝑙𝑒𝑒𝑟𝑟𝑟𝑟, the systematic error in the filar length is: 

𝑙𝑙𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �
√

𝑙𝑙𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�
2
± 2�∆

√
𝑙𝑙𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟��

√
𝑙𝑙𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� = 0.0002 ± 0.0010 m (4𝑟𝑟.𝑡𝑡.) (23) 

From (23), it can be said that the filar length 𝑙𝑙 is on average overestimated by 0.2 ± 1.0 mm. 
However, since this magnitude is very small and less than the smallest perceivable division on the 
measuring equipment (±0.5 mm), the systematic error in 𝑙𝑙 is overall insignificant and negligible. 
Therefore, it can be concluded that 𝑇𝑇  is directly proportional to 

√
𝑙𝑙. 

13 Comparison with Literature 

In the equation of the bifilar pendulum (𝑇𝑇 =
√

3𝜋𝜋𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟
3 �𝑙𝑙

𝑔𝑔), the only variables that affect the 
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relationship are the length of the rod 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟, the radius of gyration 𝑟𝑟 and the gravitational 
acceleration 𝑔𝑔. Therefore, to test whether the results are reasonable, the theoretical period have 
been calculated using the literature values (𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 = 0.1958 ± 0.0001 m, 𝑟𝑟 = 0.0750 ± 0.0001 m, 𝑔𝑔 =
9.81 ms−2) and plotted onto Figure 9 below, to allow comparisons with the experimental data.  

Figure 9. A linearised plot of the experimental and theoretical values of 𝑇𝑇  against 
√

𝑙𝑙.7 

As shown above, because the theoretical line only passes through the error bars of the third and 
last data point, it suggests that the data is only slightly reliable. It has also been observed that 
the experimental slope (1.52 ± 0.07 sm−1

2) is slightly greater than the theoretical slope (1.512 ±
0.002sm−1

2). While this may have been explained by flaws in the physical properties in the 
apparatus, for example, the unequal mass distribution of the rod resulting to the overestimation 
in the moment of inertia, this speculation may be too superficial to be proven to be true within 
the errors of the currently available apparatus. Rather, it would be more appropriate to assess 
whether there are violations to the physical assumptions during the experimental process. 

One of the major assumptions violated is Assumption 1, where the initial angle of gyration 𝜃𝜃0 is 
assumed to be zero. However, because the angle of gyration must be non-zero to cause some 
amount of observable motion, the period 𝑇𝑇  is subsequently unavoidably greater than the 
theoretical since additional time is used to perform the vertical motion. To account for this, Karlin 
and Maday (1985), Khan et al. (2017) and Wouter (2016) proposed a non-linear representation of 
Equation 5, eliminating the use of small-angle approximations: 

𝜃𝜃 ̈+ 3𝑔𝑔𝑟𝑟2 sin 𝜃𝜃

𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟
2�𝑙𝑙2 − 𝑟𝑟2(1 − cos 𝜃𝜃)

2

= 0 (24) 

By solving (24) using numerical methods, 𝜃𝜃(𝑡𝑡) is approximated and the period 𝑇𝑇  is subsequently 
derived from the average difference in 𝑡𝑡 between the two maxima of 𝜃𝜃(𝑡𝑡)7F

8, such that the theoretical 
values of the period 𝑇𝑇  can be calculated for different initial values of gyration angles 𝜃𝜃0. 

As demonstrated in Figure 10 below, when the initial angle of gyration 𝜃𝜃𝑖𝑖 is increased, the 
theoretical slope generally increases and no longer exhibits proportionality. This justifies why the 

 
7 As the greatest absolute uncertainty in the theoretical period 𝑇𝑇  is only 0.002s, it will only take up 0.25% of the vertical space. 
Since this magnitude is too small to be observed, the vertical error bars are not shown. 
8 𝜃𝜃(𝑡𝑡) is approximated using numerical methods because it is infeasible to obtain the analytical solution of such a complex differential 
equation. The Python script used to perform the numerical method can be found in Appendix 17.7. 
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experimental slope is greater than the theoretical (when 𝜃𝜃0 is assumed to be zero): 

Figure 10. Theoretical values of 𝑇𝑇  against 
√

𝑙𝑙, for varying initial angles of gyration 𝜃𝜃0. 

14 Sources of error and limitations 

Figure 11. A demonstration of potential sources of errors and improvements. 
 # Source of error Significance Improvements 

1 

Rod is released by 
hand, and not always 
released parallel to 

the ground, 
introducing chaotic 
motion, violating 
Assumption 3. 

Very significant in affecting the random 
error. It has been observed that the 

bifilar pendulum is highly sensitive to 
small changes in the initial condition, 

meaning small chaotic movements 
initially can amplify quickly, making the 

measurement of period infeasible. 

In Figure 11, two electromagnets 
should be installed on both ends of 

the rod and are to be controlled by a 
computer. This setup is less likely to 
introduce chaotic motion because the 

rods are properly levelled and 
released at the exact same time. 

- 
Initial angle of 

gyration 𝜃𝜃0 is not 
constant across trials. 

Very significant in affecting the random 
error. Since the dataset is obtained by 
the last 45 oscillations of the recording, 
𝜃𝜃0 may be different across recordings of 

Instead of obtaining strictly 45 
oscillations, the recordings should be 
first aligned such that 𝜃𝜃0 is the same 
across all trials, then an intersection 

Often hard to keep rod 
parallel to ground when 
released, hand trembling 

can worsen stability

Current setup Proposed setup

String slacking
String over-tensioned

Introduces chaotic motion

Free to move if 
chaotic motion occurs, 

highly unstable

Friction between 
filar and capstan

improvements

Horizontal simply 
supported beam 
stabilises chaotic 

motion

Pendulum clamp 
ensures stability 

and safety

Computer-controlled 
electromagnets 

ensures both ends of 
rods are released at 
the same instance

Use of metal filars 
reduces elasticity

4
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different lengths. As explored previously, 
nonlinearity causes the 𝑇𝑇  to increase as 

𝜃𝜃0 is increased. 

between them should be performed to 
extract the overlapping sections of 
the recording or derived from the 
asymptote of 𝜃𝜃(𝑡𝑡) against 𝑡𝑡 (see 

Figure 12 below), maximising data 
reliability. 

2 

Orientation of the 
filars causes friction 
between the capstan 

and the filar, 
violating Assumption 

2 

Slightly significant in affecting the 
random error. Because kinetic friction is 
lost, the angle of gyration 𝜃𝜃 decreases at 
a greater rate, causing larger variations 

in 𝑇𝑇 . 

Using pendulum clamps will ensure 
that filars are properly secured, 

minimising string-to-string friction. 

3 
Filars are elastic, 

violating Assumption 
5. 

Slightly significant in affecting the 
systematic error. Because of the weight 

of the rod, the length of filars 𝑙𝑙 can 
extend by a few millimetres, causing 

values in 𝑇𝑇  to be overestimated. 

Use filars with a greater spring 
constant to reduce the extension, 

thereby improving the accuracy of 𝑙𝑙. 

4 

Chaotic motion can 
be amplified because 
two stands are not 

coupled. 

Although the setup can encourage chaos 
in the system, the magnitude of the 

movement is often immeasurable, hence 
insignificant in affecting the random 

error. 

Stability can be further increased by 
adding a simply supported horizontal 

beam between both stands, 
dampening chaotic motion. 

- 

Measurement of 𝑇𝑇  
may be inaccurate 
due to errors in the 
Hough line detection 

on blurry frames 

Very insignificant, as noisy data has 
already been filtered out by the 

Savitzky-Golay filter and the impact of 
errors have been further reduced by a 

large number of oscillations 

Use a camera with a greater 
framerate and resolution, such that 
when the rod is rotated at a high 

speed, sharper images are captured 

Figure 12. Demonstration of using the asymptote of the regression line to find 𝑇𝑇 , for 𝑙𝑙 = 0.654m, trial 2. 

15 Improvement and Extensions 
Despite multiple improvements proposed above that aims to mitigate the potential sources of 
errors, there are still several violations to the assumptions of the equation that have not been 
resolved, with the most prevalent being nonlinearity (Karlin and Maday, 1985). To study this 
effect, the lower bound of the filar length 𝑙𝑙 should be decreased so to increase the magnitude of 
vertical motion. Since bifilar pendulums are often used to measure the moment of inertia of 
aircrafts, asymmetricity of the test object can lead to side-sway motion. Therefore, the 
representativeness of the data can be increased by testing objects other than a cylinder. Overall, 
to maximise the reliability of the data, the frequency and range of intervals should be increased. 
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 Plot of 𝜽𝜽(𝒕𝒕) against 𝒕𝒕 for 𝒍𝒍 = 𝟎𝟎. 𝟔𝟔𝟔𝟔𝟔𝟔𝐦𝐦, trial 2. 

Horizontal asymptote 
of regression line
 

When 𝑡𝑡 → ∞, the angle of gyration 𝜃𝜃 → 0. Therefore, 
using the horizontal asymptote of the regression line 
of 𝜃𝜃(𝑡𝑡) against 𝑡𝑡 may be more accurate than taking 
the half-range of the last 45 oscillations. 

 

Arbitrarily taking the last 45 
oscillations causes period 𝑇𝑇  to be 
always greater than theoretical. 
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17 Appendix 

17.1 Derivation of the second-order differential equation 

This section aims to derive the solution to the differential equation in (6): 

𝜃𝜃 ̈+ 𝑚𝑚𝑔𝑔𝑟𝑟2

𝐼𝐼𝑙𝑙
𝜃𝜃 = 0 (5) 

Suppose the ansatz 𝜃𝜃 = 𝑒𝑒𝑘𝑘𝑚𝑚, then: 
𝜃𝜃 = 𝑒𝑒𝑘𝑘𝑡𝑡 (5.1.1) 

𝜃𝜃 ̇ = d
d𝑡𝑡

(𝑒𝑒𝑘𝑘𝑡𝑡) = 𝑘𝑘𝑒𝑒𝑘𝑘𝑡𝑡 (5.1.2) 

𝜃𝜃 ̈ = d
d𝑡𝑡

(𝑘𝑘𝑒𝑒𝑘𝑘𝑡𝑡) = 𝑘𝑘2𝑒𝑒𝑘𝑘𝑡𝑡 (5.1.3) 

Substituting (5.1.1) and (5.1.3) into (5): 

𝑘𝑘2𝑒𝑒𝑘𝑘𝑡𝑡 + 𝑚𝑚𝑔𝑔𝑟𝑟2

𝐼𝐼𝑙𝑙
𝑒𝑒𝑘𝑘𝑡𝑡 = 0 

𝑒𝑒𝑘𝑘𝑡𝑡 �𝑘𝑘2 + 𝑚𝑚𝑔𝑔𝑟𝑟2

𝐼𝐼𝑙𝑙
� = 0 (5.2) 

In (5.2), because 𝑒𝑒𝑘𝑘𝑡𝑡 ≠ 0, the characteristic equation is: 

𝑘𝑘2 + 𝑚𝑚𝑔𝑔𝑟𝑟2

𝐼𝐼𝑙𝑙
= 0 (5.3) 

Solving for 𝑘𝑘: 

𝑘𝑘 = ±�𝑚𝑚𝑔𝑔𝑟𝑟2

𝐼𝐼𝑙𝑙
𝑖𝑖 (5.4) 

Substituting 𝑘𝑘 into the ansatz in (5.1.1): 

𝜃𝜃 = 𝑒𝑒±�𝑚𝑚𝑔𝑔𝑟𝑟2

𝐼𝐼𝑙𝑙 𝑖𝑖𝑡𝑡 (5.5) 

Applying the Euler’s formula, 𝑒𝑒𝑖𝑖𝑡𝑡 = cos(𝑡𝑡) + 𝑖𝑖 sin(𝑡𝑡): 

𝜃𝜃 = 𝜃𝜃𝑖𝑖𝑚𝑚𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟𝑙𝑙 cos�±�𝑚𝑚𝑔𝑔𝑟𝑟2

𝐼𝐼𝑙𝑙
𝑡𝑡� + 𝜃𝜃𝑖𝑖𝑚𝑚𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟𝑙𝑙

̇ 𝑖𝑖 sin �±�𝑚𝑚𝑔𝑔𝑟𝑟2

𝐼𝐼𝑙𝑙
𝑡𝑡� (5.6) 

Using the initial condition of 𝜃𝜃𝑖𝑖𝑚𝑚𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟𝑙𝑙 = 𝜃𝜃0, 𝜃𝜃𝑖𝑖𝑚𝑚𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟𝑙𝑙
̇ = 0, then the solution is found to be: 

𝜃𝜃 = 𝜃𝜃0 cos��𝑚𝑚𝑔𝑔𝑟𝑟2

𝐼𝐼𝑙𝑙
𝑡𝑡� (6) 
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17.2 Formula for the percentage error in the period 

Given the formula for a bifilar pendulum suspended by a rod: 

𝑇𝑇 = 2𝜋𝜋𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟
𝑟𝑟

� 𝑙𝑙
12𝑔𝑔

(25) 

The error in 𝑇𝑇  is therefore: 

Δ𝑇𝑇 = �� 𝜕𝜕𝑇𝑇
𝜕𝜕𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟

Δ𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟�
2
+ �𝜕𝜕𝑇𝑇

𝜕𝜕𝑟𝑟
Δ𝑟𝑟�

2
+ �𝜕𝜕𝑇𝑇

𝜕𝜕𝑙𝑙
Δ𝑙𝑙�

2
 

Δ𝑇𝑇 =
⎷

��
�

�
2𝜋𝜋
𝑟𝑟

� 𝑙𝑙
12𝑔𝑔

Δ𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟�
2

+ �−2𝜋𝜋𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟
𝑟𝑟2 � 𝑙𝑙

12𝑔𝑔
Δ𝑟𝑟�

2

+ �
𝜋𝜋𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟

𝑟𝑟𝑙𝑙
� 𝑙𝑙

12𝑔𝑔
Δ𝑙𝑙�

2

(26) 

17.3 Code for pilot study 

Using the equation obtained in Appendix 17.1, the following code creates Fig. 3 and Fig. 4: 
Filename: pilot.py 
Language: Python 3.9.7 
Packages used: 

- numpy 1.8.5 
- pandas 1.1.2 
- matplotlib 2.2.5 

''' 
This script does the following: 
- calculate T for 0.001 < l < 1.500, with increments of 0.001 
- save the raw data to a CSV file. 
- for 0.001 < l < 1.500, with increments of 0.001: 
    - for 0.0010 < r < 0.0979, with increments of 0.0001: 
        - calculate the percentage error in T 
        - plot on a 2D axis with the 'turbo' colormap 
- store the graph in a PNG image. 
''' 
 
import math 
import numpy as np 
import matplotlib.pyplot as plt 
import pandas as pd 
 
g = 9.81 
 
def getT(l_rod, r, l): 
    return 2*math.pi*l_rod/r*math.sqrt(l/12/g) 
 
def getTerr(l_rod, 𝛿𝛿l_rod, r, 𝛿𝛿r, l, 𝛿𝛿l): 
    return math.sqrt( 
        math.pow((𝛿𝛿l_rod*math.pi*math.sqrt(l/g)) / (math.sqrt(3)*r), 2) + 
        math.pow((𝛿𝛿r*math.pi*l_rod*math.sqrt(l/g)) / (math.sqrt(3)*math.pow(r, 2)), 2) + 
        math.pow((𝛿𝛿l*math.pi*l_rod*math.sqrt(l/g)) / (math.sqrt(3)*r*l*2), 2) 
    ) 
 
df0 = pd.DataFrame([(l, getT(.1958, .075, l)) for l in np.arange(.001, 1.500, .001)], columns=['l
', 'T']) 
df0.to_csv('output1/pilot.csv', index=False) 



17 

 
data = [] 
l_rod, 𝛿𝛿l_rod = .1958, .0001 
𝛿𝛿l = .001 
𝛿𝛿r = .001 
for l in np.arange(.001, 1.500, .001): 
    for r in np.arange(.001, .0979, .0001): 
        pct𝛿𝛿T = min(getTerr(l_rod, 𝛿𝛿l_rod, r, 𝛿𝛿r, l, 𝛿𝛿l) / getT(l_rod, r, l), .025) 
        data.append([l, r, pct𝛿𝛿T]) 
 
df = pd.DataFrame(data, columns=['l', 'r', 'pct𝛿𝛿T']) 
plt.rcParams['font.family'] = 'Latin Modern Roman' 
plt.scatter(x=df['l'],y=df['r'],c=df['pct𝛿𝛿T'], cmap='turbo') 
plt.xlim([.001, 1.500]) 
plt.ylim([.001, .0979]) 
plt.savefig('output1/pilot.png', dpi=300) 

17.4 Formula for the adjustment of filar length 

Figure *. The cross-sectional view of the setup along the 𝑦𝑦-̂𝑧𝑧 ̂plane. 

In the experiment, the raw filar length (𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟) is measured by resting a metre ruler on the top of 
the rod and reading the value on the top of the top rod, as demonstrated in the figure above. 
Hence, to the true filar length is better represented by: 

𝑙𝑙 = raw filar length − distance to centre of top rod + distance to centre of mass of rod 

𝑙𝑙 = raw filar length − diameter of top rod
2

+ diameter of rod
2

 

𝑙𝑙 = 𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟 − 1
2

𝑑𝑑𝑡𝑡𝑟𝑟𝑡𝑡 + 1
2

𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 (11) 

 

𝑦𝑦 ̂

𝑧𝑧 ̂

 

𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟  

𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡  

 

𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑  

𝑙𝑙 
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17.5 Code for parsing raw video 

Filename: parse.py 
Language: Python 3.9.7 
Packages used: 

- rich 9.10.0 
- numpy 1.8.5 
- pandas 1.1.2 
- opencv-python 4.5.3.56 

''' 
This script does the following: 
- read the list of videos from a specific folder 
- for each video, process each frame: 
    - for each frame, convert the frame to greyscale 
    - perform canny edge detection 
    - perform probabilistic hough line transform 
    - for each possible location of the rod: 
        - select the longest line 
        - calculate the length of the rod (in pixels) using Pythagoras\ 
        - calculate the angle of the rod (in radians) using atan2 
    - aggregate the temporal changes of the rod 
- store the data in multiple CSV files for further processing 
''' 
 
from rich.progress import Progress 
import numpy as np 
import pandas as pd 
import cv2 
import os 
 
class Line: 
    def __init__(self, line): 
        self.p1 = np.array(line[0][:2]).astype(int) 
        self.p2 = np.array(line[0][2:4]).astype(int) 
 
    def getLen(self): 
        self.length = np.sqrt(np.sum((self.p1 - self.p2) ** 2, axis=0)) 
        return self 
 
    def getAngle(self): 
        self.angle = np.arctan2( 
            self.p2[1] - self.p1[1], 
            self.p2[0] - self.p1[0] if self.p1[0] < self.p2[0] else self.p1[0] - self.p2[0] 
        ) 
        return self 
 
with Progress() as progress: 
    files = os.listdir('src') 
    task0 = progress.add_task(f"[green]Processing files...", total=len(files)) 
    for filename in files: # process each video in the specified folder 
        progress.update(task0, advance=1, description=f"[green]Processing {filename}...") 
        capture = cv2.VideoCapture(os.path.join("src", filename)) 
         
        totalframecount = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) 
        task1 = progress.add_task(f"[green]Parsing frames...", total=totalframecount) 
        vals, framecount = [], 0 
        while 1: 
            success, frame = capture.read() 
            if not success: 
                break 
             
            image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 
            edges = cv2.Canny(image, 100, 100, L2gradient=True) 
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            lines = cv2.HoughLinesP(edges, 1, np.pi/180, 100, maxLineGap=200) 
             
            if lines is not None: 
                l = Line(sorted(lines, key=lambda x:Line(x).getLen().length, reverse=True)[0]).getLen().getAng
le() 
                vals.append([framecount, l.length, l.angle]) 
 
            progress.update(task1, advance=1) 
            framecount += 1 
         
        df = pd.DataFrame(vals, columns=['frame', 'length', 'angle']) 
        df.to_csv(os.path.join('output', f'{os.path.splitext(filename)[0]}.csv'), index=False) 

17.6 Code for parsing raw data 

Filename: analyse.py9 
Language: Python 3.9.7 
Packages used: 

- rich 9.10.0 
- numpy 1.8.5 
- pandas 1.1.2 
- scipy 1.18.5 

''' 
This script does the following: 
- read raw data from a specific folder 
- for each raw data 
    - smoothen noisy data using a non-uniform Savitzky-Golay filter 
    - obtain the peaks of the smoothened data 
    - for each peak: 
        - calculate the average time 
        - calculate the difference in time 
        - calculate the average length of the rod (in pixels) 
        - calculate the average angle of the rod (in radians) 
- aggregate all processed data 
- store the data in one CSV file for further processing 
''' 
 
import os 
import numpy as np 
import pandas as pd 
from scipy.signal import argrelextrema 
from rich.progress import Progress 
 
def non_uniform_savgol_filter(x, y, window, polynom): 
    half_window = window // 2 
    polynom += 1 
 
    A = np.empty((window, polynom)) 
    tA = np.empty((polynom, window)) 
    t = np.empty(window) 
    y_smoothed = np.full(len(y), np.nan) 
 
    for i in range(half_window, len(x) - half_window, 1): 
        for j in range(0, window, 1): 
            t[j] = x[i + j - half_window] - x[i] 
 
        for j in range(0, window, 1): 
            r = 1.0 

 
9 The code for the non-uniform Savitzy-Golay filter is obtained from https://dsp.stackexchange.com/a/64313. (Signal Processing 
Stack Exchange, 2020) 

https://dsp.stackexchange.com/a/64313
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            for k in range(0, polynom, 1): 
                A[j, k] = r 
                tA[k, j] = r 
                r *= t[j] 
 
        tAA = np.matmul(tA, A) 
        tAA = np.linalg.inv(tAA) 
        coeffs = np.matmul(tAA, tA) 
 
        y_smoothed[i] = 0 
        for j in range(0, window, 1): 
            y_smoothed[i] += coeffs[0, j] * y[i + j - half_window] 
 
        if i == half_window: 
            first_coeffs = np.zeros(polynom) 
            for j in range(0, window, 1): 
                for k in range(polynom): 
                    first_coeffs[k] += coeffs[k, j] * y[j] 
        elif i == len(x) - half_window - 1: 
            last_coeffs = np.zeros(polynom) 
            for j in range(0, window, 1): 
                for k in range(polynom): 
                    last_coeffs[k] += coeffs[k, j] * y[len(y) - window + j] 
 
    for i in range(0, half_window, 1): 
        y_smoothed[i] = 0 
        x_i = 1 
        for j in range(0, polynom, 1): 
            y_smoothed[i] += first_coeffs[j] * x_i 
            x_i *= x[i] - x[half_window] 
 
    for i in range(len(x) - half_window, len(x), 1): 
        y_smoothed[i] = 0 
        x_i = 1 
        for j in range(0, polynom, 1): 
            y_smoothed[i] += last_coeffs[j] * x_i 
            x_i *= x[i] - x[-half_window - 1] 
 
    return y_smoothed 
 
df2s = [] 
with Progress() as progress: 
    files = os.listdir('output') 
    task = progress.add_task(f"[green]Processing files...", total=len(files)) 
    for filename in files: 
        progress.update(task, advance=1, description=f'[green]Processing {filename}...') 
        df = pd.read_csv(os.path.join("output", filename)) 
        smoothed = non_uniform_savgol_filter(df.frame.values, df.angle.values, 31, 5) 
        idx = argrelextrema(smoothed, np.greater, order=5)[0] 
 
        df1 = pd.DataFrame(columns=["frame", "length", "turning_smoothed"]) 
        df1['frame'] = df.iloc[idx].frame 
        df1['length'] = df.iloc[idx].length 
        df1['turning_smoothed'] = smoothed[idx] 
 
        df1l, df2l = df1.values.tolist(), [] 
        for i, j in enumerate(df1l[:-1]): 
            r0, r1 = df1l[i], df1l[i+1] 
            df2l.append([ 
                (r1[0] + r0[0]) / 2 / 60, 
                (r1[0] - r0[0]) / 60, 
                (r1[1] + r0[1]) / 2, 
                (r1[2] + r1[2]) / 2 
            ]) 
 
        identifier = os.path.splitext(filename)[0] 
        df2s.append(pd.DataFrame(df2l, columns=[ 
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            f"{identifier}_avg_frame", 
            f"{identifier}_frame_diff", 
            f"{identifier}_avg_length", 
            f"{identifier}_avg_turning_smoothed" 
        ])) 
 
df2 = pd.concat(df2s, axis=1) 
df2.to_csv(os.path.join("output1", "all.csv"), index=False) 

17.7 Code for numerical integration of exact nonlinear equation 

Filename: simulate.py 
Language: Python 3.9.7 
Packages used: 

- numpy 1.8.5 
- pandas 1.1.2 
- scipy 1.18.5 

''' 
This script does the following: 
- for 0 m < l < 1.5 m in increments of 0.001 m: 
    - for initial θ -> 0, π/12, π/6, π/4, π/3 and 5π/12: 
        - numerically solves the exact nonlinear equation from 0 < t < 20, with step size 0.001s 
        - derives the period of the motion by averaging the Δt in the peaks of θ(t) 
- saves the results to a CSV file. 
''' 
 
from scipy.integrate import odeint 
from scipy.signal import argrelextrema 
import numpy as np 
import pandas as pd 
 
g = 9.81 
r = 0.0750 
l_rod = 0.1958 
 
def theta_nonlinear(U, x): 
    return [U[1], -3*g*np.power(2*r,2)/(l*np.power(l_rod,2))*np.sin(U[0])/np.sqrt(1-
0.5*np.power(2*r/l, 2)*(1-np.cos(U[0])))] 
 
def theta_linear(U, x): 
    return [U[1], -12*g*np.power(r,2)/(l*np.power(l_rod,2))*U[0]] 
 
data = [] 
for sqrt_l in np.linspace(0, 1.5, 1500): 
    l = np.power(sqrt_l, 2) 
    row = [sqrt_l] 
    for n in [0.0001, 1, 2, 3, 4, 5]: 
        xs = np.linspace(0, 20, 20000) 
        ys = odeint(theta_nonlinear, [n*np.pi/12, 0], xs)[:,0] 
 
        row.append(np.mean(np.diff(xs[argrelextrema(ys, np.greater, order=5)[0]]))) 
    data.append(row) 
 
df = pd.DataFrame(data, columns=['sqrt_l', '0', 'pi/12', 'pi/6', 'pi/4', 'pi/3', '5pi/12']) 
df.to_csv('output1/simulate.csv') 
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